
54  |   	﻿�  CPT Pharmacometrics Syst Pharmacol. 2024;13:54–67.www.psp-journal.com

Received: 30 March 2023  |  Revised: 11 September 2023  |  Accepted: 13 September 2023

DOI: 10.1002/psp4.13055  

A R T I C L E

Cluster Gauss-Newton method for a quick approximation of 
profile likelihood: With application to physiologically-based 
pharmacokinetic models

Yasunori Aoki1,2   |   Yuichi Sugiyama2,3

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any 
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

1Drug Metabolism and 
Pharmacokinetics, Research and 
Early Development, Cardiovascular, 
Renal and Metabolism (CVRM), 
BioPharmaceuticals R&D, AstraZeneca, 
Gothenburg, Sweden
2Laboratory of Quantitative System 
Pharmacokinetics/Pharmacodynamics, 
Josai International University, Tokyo, 
Japan
3iHuman Institute, ShanghaiTech 
University, Shanghai, China

Correspondence
Yuichi Sugiyama, Laboratory of 
Quantitative System Pharmacokinetics/
Pharmacodynamics, Josai International 
University, 2-3-11 Hirakawa-cho, 
Chiyoda-ku, Tokyo 102-0093, Japan.
Email: y-sugiyama@jiu.ac.jp

Funding information
Japan Society for the Promotion of 
Science (JSPS), Grant/Award Number: 
22H02789

Abstract
Physiologically-based pharmacokinetic (PBPK) models can be challenging to 
work with because they can have too many parameters to identify from observ-
able data. The profile likelihood method can help solve this issue by determining 
parameter identifiability and confidence intervals, but it involves repetitive pa-
rameter optimizations that can be time-consuming. The Cluster Gauss-Newton 
method (CGNM) is a parameter estimation method that efficiently searches 
through a wide range of parameter space. In this study, we propose a method 
that approximates the profile likelihood by reusing intermediate computation 
results from CGNM, allowing us to obtain the upper bounds of the profile likeli-
hood without conducting additional model evaluation. This method allows us 
to quickly draw approximate profile likelihoods for all unknown parameters. 
Additionally, the same approach can be used to draw two-dimensional profile 
likelihoods for all parameter combinations within seconds. We demonstrate the 
effectiveness of this method on three PBPK models.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Profile likelihood can be used to determine parameter identifiability and confi-
dence interval of the physiologically-based pharmacokinetic (PBPK) model; how-
ever, it is a computationally intensive process.
WHAT QUESTION DID THIS STUDY ADDRESS?
Is it possible to obtain profile likelihood quickly and easily?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Profile likelihood can be approximated by reusing the intermediate computa-
tion results of the parameter estimation via the Cluster Gauss-Newton method 
(CGNM), hence, it can be drawn quickly without additional model evaluation 
and can be done easily with R-package CGNM.
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INTRODUCTION

Background

Given the complexity of physiology and the limitation of 
experimentally observable quantities, physiologically-based 
mechanistic (PBPK) models often become overparameter-
ized mathematical models. That is to say, the unknown 
model parameter combination cannot be uniquely esti-
mated from the observed data. The Cluster Gauss-Newton 
method (CGNM) is an algorithm inspired by this overpa-
rameterized nature of the physiologically-based mechanis-
tic models (e.g., PBPK models), and it finds multiple best-fit 
parameter combinations of a fixed-effect model.1 CGNM 
and its predecessor the Cluster Newton method2 have been 
used previously by several authors3–9 to analyze PBPK mod-
els and a systems pharmacology model.

The CGNM can be used to estimate the model parame-
ters that are themselves of pharmacological interest. For ex-
ample, Mochizuki et al.10 and Yoshikado et al.11 have shown 
that human in vivo inhibition constants (Ki value) for the 
organic anion transporter (OATP1Bs) can be estimated from 
the endogenous biomarker even if the PBPK model used to 
analyze the data is overparameterized, hence, not all param-
eters can be estimated uniquely. Despite these conclusions 
being visually trivial when presented as the plot of parame-
ter distribution, it is desirable to have a statistically rigorous 
criterion for parameter identifiability. One way to establish 
parameter-wise identifiability is to use profile likelihood.12

In addition, the confidence interval of identifiable param-
eters can be derived using profile likelihood.13 Roughly speak-
ing, profile likelihood is a surface of maximum likelihood 
with various fixed parameters. Each point drawn as the pro-
file likelihood requires each parameter estimation to find the 
maximum likelihood; hence, it can be a computationally in-
tensive process. In this paper, we propose a method to quickly 
approximate the profile likelihood by reusing the computa-
tion done during CGNM parameter estimation; hence, with-
out extra parameter estimation nor model evaluation.

Cluster Gauss-Newton method

Mathematically speaking, the CGNM is an algorithm 
to numerically approximate solutions of nonlinear-
least squares problems. In other words, a method that 

minimizes the sum of squares residual (SSR) where mini-
mizing SSR is equivalent to maximizing likelihood assum-
ing symmetric distributions of the residual.

The CGNM method can be considered as a multi-start 
method where the algorithm starts from multiple initial 
estimates and obtains multiple approximate minimizers 
of the nonlinear-least squares problem. Then, the minima 
of these approximate minimizers are accepted as the mul-
tiple best-fit parameter combinations.

As the readers probably have experienced, minimizers 
or SSR (equivalently parameter combinations that maxi-
mize likelihood) found by the computational algorithm can 
depend on the initial estimate, and the multi-start method 
is intended to remedy this issue as well as to identify non-
identifiable parameters by obtaining multiple parameter 
combinations that minimize the SSR. Instead of naively re-
peating the conventional optimization methods with mul-
tiple initial estimates, we have developed a mathematical 
algorithm CGNM to increase the computation efficiency for 
the multi-start method. In this paper, we have initially in-
troduced CGNM,1 and we have shown the CGNM is a com-
putationally efficient and robust algorithm by comparing it 
with nine conventional and state-of-the-art algorithms.

Simply speaking, CGNM conducts Gauss-Newton-type 
iterations from various initial iterates. The initial iterates are 
generated randomly within the user-specified initial range. 
The key idea of CGNM is that instead of using a Jacobian 
matrix that is approximated or calculated for each initial iter-
ate, CGNM approximates a Jacobian-like matrix collectively 
using all initial iterates. This has been shown to give a signif-
icant advantage in computation speed and robustness. The 
collectively approximated Jacobian is used to update the ini-
tial iterate and repeat this process until a desired convergence 
criterion is met. Because of the nature of this approach, 
CGNM evaluates a wide range of parameter combinations 
that minimize SSR within and near the user-specified initial 
range. The proposed method for approximating profile likeli-
hood makes use of this nature of the CGNM.

Once the multiple best-fit parameter combinations are 
found, one can conduct further simulations using these 
multiple parameter combinations. In this way, the user 
can discuss and draw a conclusion about the simulation 
study while considering multiple possible simulation re-
sults that originate from the fact that some parameters are 
not identifiable. For example, recently, Lee et al.14 have 
shown that the despite that not all model parameters can 

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Use of profile likelihood analyses may become a standard procedure of PBPK 
model-based analysis in pharmacokinetics.
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be identified from the data, the time-course profile of re-
ceptor occupancy of warfarin can be simulated uniquely 
when plasma concentration with clear target-mediated 
drug disposition (TMDD) is observable. The conventional 
approach to this type of problem was to simplify the model 
structure or fix the model parameters so that all the un-
fixed model parameters become identifiable and conduct 
main analyses, then conduct post hoc sensitivity analyses 
by repeating the analyses with various fixed parameters 
to confirm the main finding is not influenced by the as-
sumed fixed parameter. The CGNM-based analyses can 
avoid this lengthy process and directly discuss the main 
conclusion taking the unidentifiable nature of the model 
into account.

The CGNM can easily be implemented follow-
ing pseudo code available in ref. [1]; however, actively 
maintained R implementations is currently available on 
CRAN.15 In this paper, we show that in addition to fast 
and robust parameter estimation of the overparameter-
ized model using CGNM, the profile likelihood can be ob-
tained at almost no additional computation cost (i.e., no 
further parameter estimation nor a model evaluation).

METHODS

The key idea of the proposed methodology is to make use 
of the wide range of model evaluations done during the 
CGNM iterations and draw profile likelihood. CGNM 
starts iterations from a range of initial iterates that the user 
specified as the range of interest (e.g., range of physiologi-
cally or kinetically plausible parameters) and algorithmi-
cally searches through this range to find minimizers. Thus, 
by combining all the model evaluations that were done 
during the iterations gives a wide range of model evalua-
tions to draw profile likelihood. In addition, because this 
collection of model evaluations is done algorithmically, 
one can see that there are more model evaluations in the 
parameter space where SSRs are smaller. In other words, 
the profile likelihood drawn based on this collection of 
CGNM model evaluations will have better resolution near 
where SSR is smaller and rougher resolution in the param-
eter space where SSR is larger. Roughly speaking, we draw 
profile likelihood by first binning the parameter combina-
tions by the quantile of the parameter that we are drawing 
the profile likelihood for and then finding the minimum 
SSR (hence the maximum likelihood) among these al-
ready evaluated parameter combinations within the bin. 
Then the approximation of the profile likelihood can be 
drawn using these parameter values and corresponding 
SSRs. Note that we denote this as “approximate” profile 
likelihood because we are not conducting optimization 
with fixed parameter values at each point where we draw 

the likelihood surface. Hence, strictly speaking, what we 
draw using the proposed method is an upper bound of the 
profile likelihood. If one requires a more accurate profile 
likelihood, the approximate profile likelihood can be used 
as the initial estimate and conduct further optimization.

The mathematical formulation of the 
approximate profile likelihood

The key concept of the profile likelihood is to divide the 
parameters into a low dimensional parameter of interest 
and a high dimensional nuisance parameter.16 Then ob-
tain the maximum likelihood given parameter in the pa-
rameter of interest, that is:

where pl is the profile likelihood which is a function of �, and 
l is the full likelihood which is a function of both � and �. The 
vector � is the parameters of interest, � is the vector of nuisance 
parameters. Note, in this paper, we represent a vector quantity 
with bold-faced font and a scalar quantity with a normal font. 
In addition, we limit our interest for the case where we are 
interested in either one or two dimensions of the parameter 
of interest so that we can visually represent the profile likeli-
hood. For simplicity of representation, we for now focus our 
discussion on the case of one-dimension profile, that is to say:

where plm is the profile likelihood of the mth parameter 
dimension, � is a scalar value (note here it is not bold-face 
font so it is a scaler quantity as we are only considering one-
dimensional profile likelihood) of the mth parameter, x is 
the parameter vector (including both parameter of interest 
and nuisance parameter, i.e., x = (�,�)), xm is the mth ele-
ment of the parameter vector x.

As can be clearly deduced from the above mathemati-
cal notation, the profile likelihood is a scalar function of a 
single variable. In our context, we treat these functions as 
being piecewise continuous near the maximum likelihood. 
To graphically represent a piecewise continuous function, 
we evaluate it at a finite set of points. Often, these points 
are connected by line segments to approximate the func-
tion using continuous piecewise linear functions. Let us 
denote these points as 

{
a1, a2, … , aN

}
, where we aim to 

estimate the profile likelihood function for visualization 
purposes. For ease in notation, we label these points by 
their indices in ascending order, thus ensuring aj−1 < aj. 
Essentially, plotting the profile likelihood involves solving 
a series of optimization problems to obtain points in x–y 
plane 

(
aj, plm

(
aj
))

 where

pl(�) = sup
�
l(�,�)

plm(�)= sup
x∈(x|xm=�)

l(x)
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It is crucial to note that performing these optimizations 
at the fixed points 

{
a1, a2, … , aN

}
 can be time-consuming 

and computationally intensive. Moreover, because these 
optimizations are executed numerically, their precision 
hinges on the appropriateness of the chosen algorithm to 
the specific model or problem at hand.

The primary goal of our proposed methodology is to 
enhance computational efficiency by bypassing this ex-
haustive series of optimization tasks. The key idea of pro-
posed methodology is to approximate supx∈(x|xm=aj

)l(x) by 
already computed likelihood during the CGNM iteration, 
that is:

where

Here, x1, x2, x3, … are the parameter combinations (rep-
resented as vectors) whose model evaluations were con-
ducted during CGNM iteration hence likelihoods for these 
parameter combinations are available without additional 
model evaluation. We finally draw a point on the approxi-
mate profile likelihood plot 

(
x∗
m,j
, l
(
x∗
j

))
 where x∗

m,j
 is the 

mth element of the vector x∗
j
, and the first element in ( ⋅ , ⋅ ) 

represents the position on x-axis and the second element 
represents the position on y-axis.

One can easily imagine that 
(
x∗
m,j
, l
(
x∗
j

))
 approaches 

to the true profile likelihood as 
{
x1, x2, x3, …

}
 become 

more dense sampling.
The same concept can be applied and implemented 

to the case of two-dimensional parameter of interest. We 
approximate the two-dimensional profile likelihood of 
mth and nth parameters at the finite number of points {(
aj, bk

)}
 and here we let aj−1 < aj, bk−1 < bk and

where

Then, we can draw a point on the approximate profile 
likelihood surface plot 

(
x∗
m,jk

, x∗
n,jk

, l
(
x∗
jk

))
 where x∗

m,jk
 is the 

mth element of the vector x∗
jk

, x∗
n,jk

 is the nth element of 
the vector x∗

jk
, and the first element in ( ⋅ , ⋅ , ⋅ ) represents 

the position on x-axis, the second element represents the 

position on y-axis, and the third element represents the 
position on z-axis.

Pseudo code for the algorithm to draw 
approximate profile likelihood using 
CGNM computation result

1.	 Let CGNM solve the following nonlinear least squares 
problem:

where f  is the mathematical model (function from the 
model parameter combination to model simulation), x is 
a vector of the model parameter combination, and y∗ is a 
vector of the observation.
During CGNM iteration, algorithm computes the matri-
ces X (k) and Y (k) where each row of X (k) contains a vector 
of parameter combination, each row of Y (k) contains a 
vector of model simulation, that is:

where x(k)
i

 and y(k)
i

 are ith rows of matrices X (k) and Y (k), 
respectively, n is the number of parameter combinations 
in each iterate, and (k) is the iteration number. The core 
idea of CGNM is to approximate Jacobian matrices effi-
ciently from matrices X (k) and Y (k).

2.	 Combine all matrices X (k) into one matrix

similar to matrices Y (k)

3.	 Remove duplicated row of matrix X  from both matrix 
X  and Y , e.g., if xi = xj then update X  and Y  to

plm
(
aj
)
= sup
x∈

(
x|xm=aj

)l(x) for j=1, 2, … ,N .

plm
(
aj
)
≳ l

(
x∗j

)

x∗j =argmax
x∈

{
x1,x2,x3,…

||||
aj−1+aj

2
<xm<

aj+aj+1
2

}l(x)

plmn
(
aj, bk

)
≳ l

(
x∗
jk

)

x∗
jk
=argmax

x∈

{
x1,x2,x3,…

||||
aj−1+aj

2
<xm<

aj+aj+1
2

and
bk−1+bk

2
<xn<

bk+bk+1
2

}l(x) .

argminx ∥ f(x)−y
∗ ∥2

y(k)
i

= f
(
x(k)
i

)
for i=1, 2, … ,n

X =

⎡⎢⎢⎢⎢⎣

X (0)

X (1)

⋮

X (k)

⎤⎥⎥⎥⎥⎦

Y =

⎡⎢⎢⎢⎢⎣

Y (0)

Y (1)

⋮

Y (k)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮

xi
⋮

xj−1
xj+1
⋮

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮

yi
⋮

yj−1
yj+1
⋮

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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4.	 calculate SSRs from matrix Y  and store them in a vector 
r that is:

where ri is the ith element of vector r.
5.	 We now convert SSRs to likelihood

where �i is the variance of yi − y∗.
6.	 We now draw the profile likelihood of the mth 

parameter.
6.1.	Divide the elements of vector x⋅m into user defined 

number of quantiles (current implementation uses 
rounded value of number of rows of matrix X ∕100 
as default), where x⋅m denotes the mth column of 
matrix X . We then denote the set of indices that be-
long to the nth quantile as Qn.

6.2.	Find maximum likelihood for each quantile, that is:

6.3.	Plot the following points and connect them with 
lines:

where xj∗nm is an element of the j∗thn  row mth column 
of matrix X , the first element in ( ⋅ , ⋅ ) represents 
the position on x-axis and the second element rep-
resents the position on y-axis of the approximate 
profile likelihood plot.

Computation environment

All numerical computation were done on MacBook 
Air (M1, 2020) with Apple M1 CPU with 8 GB of 
memory. R version 4.0.3 (2020-10-10),17 CGNM pack-
age version 0.6.6, minpack.lm 1.2-118 (for Levenberg–
Marquardt method19–21), rxode2 version 2.0.13 (for 
model ODE evaluation)22 were used for the numerical 
experiment. All computation speeds were measured 
first by restarting the computer and then using Sys.
time() function. The computations were done using 
only single core of the CPU for the simplicity of com-
putation time comparison; however, the CGNM is an 
embarrassingly parallelizable algorithm and an ex-
ample of parallelization can be seen in the vignette of 
CGNM R package.15

RESULTS

Example 1

To demonstrate the approximate profile likelihood drawn 
based on the proposed method is a reasonable approxi-
mation of the profile likelihood, we have applied the 
proposed methodology to a PBPK model for the OATPs 
mediated drug–drug interaction (DDI) of pitavastatin and 
rifampicin published in Yoshikado et al.11 We consider es-
timating seven kinetic parameters from the clinical data 
from DDI trials.

As can be seen in Figure  1, the approximate profile 
likelihood for all seven parameters can be drawn quickly 
in 1.1 s. From this plot, we can see the parameter of our 
interest, inhibition constant (freeKiOATP), appears to be 
identifiable. This example demonstrates that even though 
the model itself is unidentifiable (i.e., not all unknown pa-
rameters can be estimated from the data), the parameter 
of interest—the OATP1B inhibition constant—can indeed 
be estimated from the available data. This observation fur-
ther substantiates the conclusions drawn in the original 
paper.11

To confirm the general shapes of the profile likeli-
hoods drawn using the proposed method are reliable ap-
proximations, we compare them with the conventional 
method (using the Levenberg–Marquardt [LM] method 
as the parameter estimation algorithm). We chose the LM 
method because it performed well in an extensive compar-
ison of various optimization algorithms presented in ref. 
[1]. Given the long history and widespread use of the LM 
method, especially its implementation in MINPACK,21 we 
consider it the “conventional” approach.

As can be seen in Figure 1, the general shape of the pro-
file likelihoods is consistent between these two methods.

In addition, in Table  1, the interquartile ranges that 
are estimated from both methods are tabulated. Given 
the approximate profile likelihood is an upper-bound of 
the true profile likelihood (in −2log likelihood scale), the 
interquartile range estimated from approximate profile 
likelihood underestimates true interquartile range. How-
ever, the interquartile ranges obtained by these methods, 
when the parameters are identifiable, are comparable.

To improve the accuracy of the approximate profile 
likelihood, we can re-run the CGNM parameter estima-
tion while fixing the distribution of the parameter of inter-
est. Here, we use freeKiOATP as the parameter of interest. 
That is to say, we run the CGNM, but at each iteration, 
freeKiOATP does not move while other parameters are 
moved according to the regular CGNM algorithm. As can 
be seen in Figure 2a in comparison to Figure 2b, approxi-
mate profile likelihood becomes almost identical to profile 

ri= ∥yi−y
∗ ∥22

li=
1√
2��i

e
−

ri
2�∗
i for all i.

j∗n=argmaxj∈Qnlj for all n.

(
xj∗n m, lj∗n

)
for all n,
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likelihood drawn using the conventional method. Note 
that this extra CGNM iteration took 3.7 min of additional 
computation.

The conventional approach took around 3 h after param-
eter estimation to compute profile likelihood when using 
the LM method as the optimization method with the best-fit 
parameter found by the CGNM as the initial iterate of LM. 
Note that if the LM method is started from an arbitrary initial 
estimate, it failed to converge, as can be seen in Figure S4.

Figure 3 shows the 2D profile likelihood drawn using 
the proposed method. For ease of visualizability, we are 
only showing the part that is below the threshold of the 
chai squared distribution with a degree of freedom of 2 
and alpha of 0.25. To draw 2D profile likelihood, it only 
took 1.7 s. In Figure 3, we can clearly see the parameter-
parameter correlations. From Figure 3, we have observed 
a clear linear parameter-parameter relationship of the 
product of fraction absorbed and intestinal availability 

F I G U R E  1   This figure depicts the profile likelihoods of the PBPK model for the DDI between pitavastatin and rifampicin, as published 
in Yoshikado et al.11 (Example 1). The black solid lines and dots represent the approximate profile likelihood calculated using the proposed 
algorithm. By re-utilizing all the model evaluations performed during the CGNM iteration, the construction of the approximate profile 
likelihood for all seven unknown parameters took just 1.1 s. The CGNM parameter estimation itself required 5.3 min. The red solid lines 
correspond to the profile likelihood constructed using the conventional method, which uses the LM method for parameter optimization, 
which took 3 h. Here, the best fit parameter obtained by the CGNM parameter estimation was used as the initial iterates of the LM 
method. CGNM, Cluster Gauss-Newton method; DDI, drug-drug interaction; LM, Levenberg-Marquardt; PBPK, physiologically-based 
pharmacokinetic.

T A B L E  1   The interquartile ranges of the PBPK model for DDI of pitavastatin and rifampicin published in Yoshikado et al.11 (Example 1) 
that are estimated based on the profile likelihoods derived from both the proposed and conventional methods.

Proposed method (1.1 s) Conventional method (3 h)

Beta NA (<0.00056, >0.9) Not identifiable NA (<0.1, >0.9) Not identifiable

CLintall 6280 [3400, 6900] Identifiable 5750 [3800, 6900] Identifiable

FaFg NA [0.53, >0.98) Not identifiable NA [0.53, >0.9) Not identifiable

fbile NA [0.54, >1) Not identifiable NA [0.56, >0.9) Not identifiable

freeKiOATP 456 [390, 680] Identifiable 437 [360, 760] Identifiable

ka NA (<0.97, >62,000) Not identifiable NA (<1, >10,000) Not identifiable

ksto NA [1, >6000) Not identifiable NA (<1, >10,000) Not identifiable

Note: Square brackets signify the determinable upper or lower bounds of the interquartile ranges as per the profile likelihood. Parentheses indicate that the 
upper or lower bounds of the interquartile ranges lie beyond the domain in which the profile likelihood was drawn (hence undetermined). The declared 
identifiabilities are contingent on the criterion delineated in ref. [11].
Abbreviations: DDI, drug-drug interaction; NA, not applicable; PBPK, physiologically-based pharmacokinetic.
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(FaFg), and fraction of the drug that is excreted via bile 
(fbile). In fact, the slope of this linear relationship is ob-
served to be close to one and based on this observation 
we have built a hypothesis that we can reparametrizing 
the model with FaFg + fbile as one of the parameters. 
To investigate this, one could reparameterize the model 
and conduct the profile likelihood; however, we can do 
ad hoc reparameterization for the parameter combina-
tions with the known likelihood (based on the model 
evaluations during the CGNM iteration) and then apply 
the proposed method to produce approximate profile 
likelihood. In other words, we make use of the fact that 
likelihood is invariant with respect to the parameter 
transformation so that we can construct approximate 
profile likelihood of the reparameterized model with-
out conducting new estimation or model evaluation. As 
can be seen in Figure 4a, we were able to draw an ap-
proximate profile likelihood of FaFg + fbile based on the 
CGNM parameter estimation, where FaFg and fbile are 
parameterized as separate parameters in 0.5 s. Figure 4b 
shows the profile likelihood of FaFg + fbile obtained 
using the reparameterized model where FaFg + fbile and 
fbile are the parameters together with the other five pa-
rameters (i.e., FaFg + fbile, fbile, Beta, CLintall, freeK-
iOATP, Ka, and ksto are the parameters of the model). 
Although Figure 4a,b are not identical, the general shape 
is preserved.

Example 2

To illustrate how approximate profile likelihood can be 
used to discuss the sensitive parameters, we have applied 

the proposed method to the PBPK model of an endoge-
nous biomarker for OATP-mediated DDI, coproporphyrin 
I (CP-1). Yoashikado et al.11 state that “three parameters 
out of eight, CLint,all (overall intrinsic clearance), vsyn (rate 
of biosynthesis of CP-1), and Ki,u,OATP (OATP1B inhibition 
constant) were characterized as relatively sensitive.”

Figure 5 depicts the approximate profile likelihood of 
all eight parameters of the CP-1 PBPK model. As can be 
seen clearly from Figure  5, three parameters Yoshikado 
et al. have identified is sensitive with respect to the like-
lihood; that is to say, they are sensitive parameters with 
respect to the model fit. In addition, given approximate 
profile likelihood is the upper bound of the true profile 
likelihood, according to the criterion in Wieland et al.,12 
one can conclude that the other five parameters are not 
identifiable.

This example demonstrates that even though the 
model itself is unidentifiable (i.e., not all unknown pa-
rameters can be estimated from the data), the parameter 
of interest—the OATP1B inhibition constant—can indeed 
be estimated from the available data. This observation fur-
ther substantiates the conclusions drawn in the original 
paper.11

Compared to the conventional method, the approx-
imate profile likelihood is significantly faster, taking 
just 1.2 s versus the 2.8 h required by the conventional 
—LM-based method. As depicted in Figure 5, the profile 
likelihoods around the maximum likelihood are virtually 
identical between the two methods. However, there is a 
noticeable deviation as they move away from the max-
imum likelihood. Consequently, the profile likelihood 
drawn using both methods are nearly identical for the 
unidentifiable parameters (Beta, FaFg, fbile, freeKiMRP2, 

F I G U R E  2   Comparison of the profile likelihood of inhibition constant (freeKiOATP) of the PBPK model for DDI of pitavastatin 
and rifampicin11 (Example 1) drawn using the proposed method and the conventional method. The black line is the approximate profile 
likelihood drawn using the proposed method. Red is the profile likelihood using the conventional method. (a) Approximate profile 
likelihood drawn with an additional CGNM iterations which took 3.7 min. (b) Approximate profile likelihood drawn without any extra 
model evaluation (hence it took around 1.1 s). CGNM, Cluster Gauss-Newton method; DDI, drug-drug interaction; IQR, interquartile range; 
PBPK, physiologically-based pharmacokinetic.
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and fsyn). In a manner similar to Example 1, as shown in 
Table S4, the interquartile ranges of the identifiable param-
eters are smaller when estimated using the approximate 

profile likelihood compared to the conventional method. 
Nonetheless, the results are reasonably comparable for 
rough estimation purposes.

F I G U R E  3   A two-dimensional approximate profile likelihood of the PBPK model for DDI of pitavastatin and rifampicin11 (Example 1) 
drawn using the proposed method (took 1.7 s). We can observe various parameter-parameter relationships, one of the most noticeable ones 
is the linear relationship between fbile and FaFg. In fact, the slope of this linear relationship can be observed to be close to one from this 
plot. DDI, drug-drug interaction; PBPK, physiologically-based pharmacokinetic.
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Example 3 (identifiability analyses using 
approximate profile likelihood)

To further verify the use of approximate profile likeli-
hood for the identifiability analyses, we have applied the 
proposed method to the PBPK-TMDD model of bosentan 
published in Koyama et al.23 Koyama et al. claim that “the 
target binding parameters were identifiable only if the ob-
servations from the lowest dose (10 mg) were included.”

Figure  6a depicts the approximate profile likelihood 
where plasma concentration data from 10, 50, 250, 500, 
and 750 mg arms were included in the model fit.

As can be seen in Figure 6a, all eight parameters are iden-
tifiable from the data. However, as can be seen in Figure 6b, 
when fitting only with the 50, 250, 500, and 750 mg arms 
(without 10 mg arm), K_off (dissociation constant of target 
binding) becomes practically unidentifiable and, as can be 
seen in Figure 6c, when fitting only with the 250, 500, and 

F I G U R E  4   Approximate profile likelihood of the composite parameters fbile + FaFg of the PBPK model for DDI of pitavastatin 
and rifampicin11 (Example 1). (a) Post hoc reparameterization, where the CGNM computation that estimated fbile and FaFg as 
separate parameters, and then when drawing approximate profile likelihood, reparameterized in post hoc manner (hence no additional 
model evaluation and took 0.5 s to draw this plot). (b) Approximate profile likelihood drawn based on the CGNM computation of the 
reparameterized model where fbile + FaFg is one of the unknown parameters (3.9 min). CGNM, Cluster Gauss-Newton method;  
DDI, drug-drug interaction; PBPK, physiologically-based pharmacokinetic.

F I G U R E  5   Profile likelihoods of the PBPK model of an endogenous biomarker for OATP-mediated DDI, coproporphyrin I (CP-1)11 
(Example 2) drawn using the proposed method (took 1.2 s) and the conventional method (took 2.8 h). CGNM, Cluster Gauss-Newton 
method; DDI, drug-drug interaction; LM, Levenberg-Marquardt; PBPK, physiologically-based pharmacokinetic.



      |  63CGNM FOR QUICK APPROXIMATION OF PROFILE LIKELIHOOD

750 mg arms (without the 10 and 50 mg arms) K_off and Kd 
(dissociation equilibrium constant) become unidentifiable.

This result clearly illustrates that the plasma concen-
tration data from the lower doses are vital for estimating 
parameters related to receptor occupancy, which aligns 
with the assertions made in the original paper.23

In comparison to the conventional method, a similar 
trend—as observed in Examples 1 and 2—is evident in 
this example as well, with a better approximation nearer 
to the maximum likelihood. This also applies to the inter-
quartile ranges, as tabulated in Tables S2–S4. A notable de-
viation occurs in the identifiability of K_off, where plasma 
concentration data from the 10, 50, 250, 500, and 750 mg 
arms were incorporated into the model fit (Table S2). The 
upper bound of the interquartile range appears to be out-
side where the profile likelihood is calculated using the 
conventional method, whereas it is otherwise in the ap-
proximate profile likelihood. This is yet another instance 
showcasing that the approximate profile likelihood acts as 
an upper bound of the profile likelihood, thus leading to 
an underestimation of the interquartile range.

DISCUSSION

In this paper, we have shown that we can approximate 
profile likelihood using the intermediate model evalu-
ations of CGNM parameter estimation. Thus, after the 
CGNM parameter estimation, profile likelihood can be 
approximated without any extra model evaluation, hence, 
almost with no additional computation time. We believe 
this computationally efficient way of approximating pro-
file likelihood can be especially beneficial at the model 
building stage. To shorten the model development cycle, 
we often omit drawing profile likelihood in the earlier 
stage of the model building. However, considering mech-
anistic models are often unidentifiable, it is beneficial to 
visually understand parameter identifiability of each pa-
rameter and also the parameter-parameter correlations. 
Hence, we believe having a quick way to approximate pro-
file likelihood will be a beneficial model diagnostic tool 
that can be used during an early stage of building mecha-
nistic models, such as PBPK models.

The proposed method is possible because CGNM starts 
from randomly distributed initial iterates and search 
through the likelihood surface. Given this characteristic 

of CGNM, to some extent, the full likelihood (at least 
within the range of the initial parameter distribution) is 
well-characterized; hence, its lower dimension projection, 
profile likelihood, can be drawn. As a consequence, we 
can obtain the profile likelihood of all parameters, and we 
can also conduct post hoc reparameterization and obtain 
approximate profile likelihood.

Given that the parameter search is conducted follow-
ing the CGNM algorithm, the density of points in the pa-
rameter space where the likelihood is evaluated during 
the iteration (hence, the points used to approximate pro-
file likelihood using the proposed method) are biased to-
ward best-fit parameter combinations as can be seen in 
Figures S2–S4. This bias could cause some approximation 
error or unfavorable resolution away from the maximum 
likelihood; however, it contributes to the computational 
efficiency and good resolution near the maximum likeli-
hood. Note that to rigorously characterize full likelihood, 
one would need an exhaustive sampling where the com-
putation cost increases rapidly as the number of the di-
mension of the parameter space increases. For illustrative 
purposes, we generated 2500 uniformly distributed ran-
dom parameter combinations, evaluated the likelihood 
for each of the parameter combination, and then used to 
the proposed algorithm (using this uniform distribution 
instead of distribution created during CGNM iteration) 
to draw approximate profile likelihoods. However, as 
Figures S5–S7 indicate, it fails to approximate the profile 
likelihood. This observation shows the crucial advantage 
of reusing the parameter distribution generated during 
the CGNM iteration, for drawing relevant approximate 
profile likelihoods.

It is worth noting that a similar approach to plotting 
the profile likelihood could potentially be applied using 
the parameter distribution derived from other parameter 
optimization algorithms. For instance, we implemented 
the proposed algorithm on parameter distributions ob-
tained during the iterations of the Genetic Algorithm.24 
As depicted in Figures S8–S10, this approach was reason-
ably successful for some identifiable parameters. How-
ever, for nonidentifiable parameters, it was not as effective 
as when leveraging the distribution acquired via CGNM. 
The fundamental objective of CGNM is to obtain multi-
ple minimizers for the nonlinear least squares problem. 
In essence, it presupposes the model as unidentifiable, 
implying that certain parameters should exhibit a “flat” 

F I G U R E  6   Profile likelihood of the PBPK-TMDD model of bosentan12 (Example 3) drawn using the proposed method and the 
conventional method. (a) Plasma concentration data from the 10, 50, 250, 500, and 750 mg arms were included in the model fit. (b) Plasma 
concentration data from the 50, 250, 500, and 750 mg arms were included in the model fit. (c) Plasma concentration data from the 250, 500, 
and 750 mg arms were included in the model fit. CGNM, Cluster Gauss-Newton method; LM, Levenberg-Marquardt; PBPK, physiologically-
based pharmacokinetic; TMDD, target-mediated drug disposition; Vmax, maximum value.
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profile likelihood. This predisposition can enhance the 
proposed methodology's ability to approximate the profile 
likelihood.

Through our example, we have shown that profile 
likelihood generated using intermediate computation 
of CGNM is a reasonable estimate of profile likelihood 
that is obtained by repeatedly applying the conventional 
optimization algorithm. We claim that despite the ap-
proximate profile likelihood drawn using the proposed 
method may lack resolution at some points, the general 
feature of the profile likelihood is captured at the us-
able level. It is especially noteworthy that the proposed 
method can give a profile likelihood of all the model 
parameters, whereas the conventional method will re-
quire to repeat the procedure for each parameter. It is 
worth noting, as depicted in Figures 1, 5 and 6, that the 
profile likelihoods obtained through the LM method fre-
quently exhibit a lack of smoothness. This irregularity 
is largely attributable to the suboptimal convergence 
associated with the LM method. The presented results 
were obtained after a series of iterative adjustments to 
the settings of the LM method. Therefore, for those that 
require more robust “true” profile likelihoods, it may 
be necessary to engage with more sophisticated optimi-
zation methods, which most likely will cost even more 
computation time.

In addition, we have shown that we can re-run the 
CGNM parameter search while fixing the initial distribu-
tion of the parameter we wish to draw profile likelihood 
to refine the profile likelihood. This refinement of profile 
likelihood using CGNM was significantly faster than the 
conventional method. Although we only compared with 
the simple LM method, this advantage in the computation 
speed of CGNM is extensively discussed in ref. [1], thus 
we here will not further discuss this.

Although we have emphasized that the profile like-
lihood determined using our proposed method is ap-
proximate, it still enables conclusions about parameter 
unidentifiability. This reasoning stems from the fact that 
the approximate profile likelihood serves as the upper 
limit of the true profile likelihood. If the approximate 
profile likelihood remains flat and consistently below a 
given statistical threshold (for instance, as illustrated in 
our example using the chi distribution with α = 0.25), one 
can infer that the parameter is unidentifiable within the 
specific domain. On the other hand, if the approximate 
profile likelihood suggests that a parameter is identifiable, 
it may not actually be so. Thus, we recommend further 
computations if the identifiability of a particular param-
eter is crucial. We have visually represented this rationale 
in a schematic drawing in Figure S11.

In this study, we conducted 39 identifiability analy-
ses spanning three models and five datasets (Table  1, 

Tables S2–S4). Of these, only in one instance did the ap-
proximate profile likelihood differ from the conventional 
method (refer to the identifiability analysis of K_off in 
Table  S2; the associated approximate profile likelihood 
is depicted in Figure 6a and Figure S12a). In this unique 
case, the approximate profile likelihood erroneously 
deemed the parameter identifiable when it was not. 
Figure  S12b displays the profile likelihood for this pa-
rameter post additional CGNM computation, adjusting 
for this parameter distribution. The result aligns closely 
with the profile likelihood obtained using the conven-
tional algorithm.

In summary, we propose the following workflow:

1.	 Robustly obtain best-fit parameter combinations using 
CGNM.

2.	 Draw profile likelihood for all parameters using the 
proposed method.

3.	 Divide the parameters into unidentifiable parameters 
and possibly identifiable parameters.

4.	 Draw 2D profile likelihood using the proposed method 
to investigate parameter-parameter correlations and 
consider possible reparameterization.

5.	 Draw profile likelihood of reparametrized model 
using the proposed method by post hoc reparameteri-
zation without re-estimation of the reparametrized 
model.

6.	 Use CGNM to refine profile likelihood for the param-
eter where one wishes to have high-resolution profile 
likelihood or accurate confidence interval.

Last, we wish to illustrate some limitations of the ap-
proximate profile likelihood and its current implementa-
tion. First, as we have been emphasizing through name 
and description, it is an approximation, and, rigorously 
speaking, the upper-bound of the actual profile likeli-
hood. In addition, as can be seen in the first example, the 
resolution and accuracy of the approximate profile likeli-
hood are in the trade-off relationship. Thus, by refining 
the resolution by increasing the number of quantiles (in 
step 6–1 of the pseudo algorithm) the approximate profile 
likelihood may become non-smooth due to the artifact of 
the approximation. In addition, we focused our attention 
to the PBPK model of our interest; however, investigation 
to validate and improve the proposed algorithm may be 
of interest to more complex models, such as a Quantita-
tive Systems Pharmacology models. As CGNM is an algo-
rithm to solve the nonlinear-least squares problem, in this 
paper, we only considered fixed effect models. Given the 
discussion of the identifiability seems to be an active area 
of interest for nonlinear mixed effect models25 further in-
vestigation to extend the proposed method to such models 
may be of interest.
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CONCLUSION

We have shown that we can draw approximation of pro-
file likelihood almost for “free” (i.e., without no additional 
model evaluation) by reusing computation done during 
the parameter estimation via CGNM. The obtained pro-
file likelihood can be used for parameter identifiability 
analyses. Together with the previously published results 
on the computation efficiency and robustness of CGNM, 
we claim that CGNM is a convenient method to conduct 
parameter estimation, profile likelihood, and identifiabil-
ity analyses of complex mechanistic models.
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